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Southern Environmental Law Center
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Re: Evaluation of the Risk of Contamination of the Memphis Sand Aquifer
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Dear Ms. Garcia,

Per your request, | have analyzed the methodology, facts and data relevant to the risk of contamination of
the Memphis Sand Aquifer posed by a proposed crude oil pipeline known as the Byhalia Connection
pipeline, which would run from the Valero refinery in Memphis, Tennessee, to Marshall County,
Mississippi (the Pipeline). Specifically, my attached analyses provide a preliminary evaluation of crude-oil
related contaminant fate and transport from a potential oil spill in the Shallow Aquifer at a location
upgradient from known or suspected breaches in the Upper Claiborne Confining Unit. My calculations
include the time frames for contaminants to migrate in the Shallow Aquifer from the spill location and from
beneath the breach area to water supply wells screened in the Memphis Sand Aquifer.

Based on my review of available documents and various chemical transport analyses, | am providing the
attached comments regarding the proposed Pipeline.

Sincerely,
R =

Douglas J. Cosler, Ph.D., P.E.
Principal Chemical Hydrogeologist
Adaptive Groundwater Solutions LLC



Evaluation of the Risk of Contamination of the Memphis Sand Aquifer
by the Proposed Byhalia Connection Pipeline

Introduction

Background
Figure 1 shows the proposed 24-inch diameter, 49.63-mile high-pressure crude oil pipeline known as the

Byhalia Connection pipeline, which would run from the Valero refinery in Memphis, Tennessee, to
Marshall County, Mississippi (the Pipeline). If built, the proposed pipeline would cross the Davis Wellfield
(Figure 2), which Memphis, Light, Gas and Water (MLGW) uses to pump groundwater from the Memphis
Sand aquifer and supply drinking water to several residential areas and industrial users in southwest

Memphis.
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Proposed Byhalia Crude Qil Pipeline

Proposed Byhalia Connection Pipeline: Relation to Local Aquifers A i
i LR baston of the [
Memphes sparta aquiter

Herth-Seuth eross sectan

Legend
= Propossd pipeiine path

Uneseined asufer
concitions (Parks. 1000} Ly

LFi?  Majer rivars and streama

r upply foe Shelky County. Tannesses and nerthern Mississiopi comes from an mﬂ round gealegic Q'-!nllol' ulw wn dar An
--Ylmrov wlll!tulv) wartar scusce is the Marrghis acuiter 5
o Minsisagpn In genecal, wah T ;1mmt MPH WomEnnt rroas ancilon
faster, at speeds of 2-10 MPH.

Tha reglonal

lucal fivers moves much

Selantific reforances

The chagrarms above show the proposed Byhalia Connection Pipeline in relation to this groundwater source. The pipeline path is shawn s a red dated
e 31 e MAxATLIT Gepth of 25 feet, il the PESIME SEpth wil vary wih & maprty of It 8t 4.5 feet below ground surtace.

Thacs (s & thick clay st caled the Uppar Claboma confining unit that s above thi Memphis/Spans squfes, This natursl Bemation provicss &
presective barmier batwaen this squier and ary surface level actidty. With this iay layer caoping the agquifer. it becomes corfired and is considered
unconfined where the clay is absem The grey oross-hatched sechon is an arss whore hers & an absence of day and the Momphis/Sparta aguiier
appronchin the gresind surdace

Thats are natursl breached, o Gape. in I clay [ayer Tat can alow watir of POCre Gualty o #nter e Memphis Bquifer; HowEver, INere Be 1o known
Ermachen alang the proposed pipeling corridor according to the meost cument research

Diagram A shows e maxmum pigeline d8ph in an area with the prolective cay layes above e MempriuSparts squder. Disgram 8 shows the
FRAXITIM pipain CEpIN in 5 Area whre thare | no clay layer 380ve the Mampnia/Spars squiler

Figure 2 also illustrates that the Pipeline route crosses the Davis Wellfield and MLGW'’s Wellhead
Protection Zone 2 near areas of known and suspected breaches in the clay layer [Upper Claiborne
Confining Unit (UCCU)] that separates the Shallow Aquifer, where the Pipeline will be located, from the

underlying Memphis Sand aquifer.
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Figure 2
Proposed Byhalia Crude Qil Pipeline and Davis Wellfield
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Although the UCCU patrtially protects some parts of the Memphis Sand aquifer, that clay layer has several
known and suspected breaches, holes, and leaks (Attachment A). Those conduits may allow shallow
groundwater contaminants to seep into the deeper Memphis Sand aquifer, as illustrated in Figure 3.
Thus, the presence of the clay layer in some places does not mean that the Memphis Sand Aquifer is
protected from contamination resulting from an oil spill. In addition, the actual dimensions of known or
suspected breaches are only approximate and would require further detailed field investigations (e.g.,

deep soil borings and/or groundwater pumping tests) to delineate breach geometries with more accuracy.

To evaluate these possible risks of contamination to the Memphis Sand aquifer this report presents
preliminary analyses of the travel times of groundwater contaminants associated with crude oil releases
from potential leak(s) in the high-pressure Pipeline.



Figure 3
Potential Contamination of Memphis Sand Aquifer by Crude-Qil Pipeline Leak
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Crude Oil as a Groundwater Contaminant Source

Oil-Spill Remediation

Public concerns over dangerous pipeline leaks are common, as more than 1,650 individual leaks

have occurred in the U.S. since 2010, spilling more than 11.5 million gallons of oil.%

Due to the tremendously-high operating pressures of oil pipelines (e.g., more than twice the pressure of a
fire hose, which can spray water 30 floors into the air) hundreds of thousands of gallons of crude oil can
spew out of a small pipeline opening.?

As shown in Figure 4, a crude oil release causes contamination in the form of a light non-aqueous phase
liquid (LNAPL, which is immiscible with water) and dissolved-phase contamination in groundwater

typically on a very large scale. Further, remediation of LNAPL contamination in the subsurface is very

! List of Pipeline Accidents, WIKIPEDIA, https://en.wikipedia.org/wiki/List_of pipeline_accidents (last visited
Feb. 3, 2021); List of Pipeline Accidents in the U.S. in 2019, WIKIPEDIA,
https://en.wikipedia.org/wiki/List_of_pipeline_accidents_in_the_United_States_in_2019 (last visited Feb.
3, 2021).

2 Lisa Song, Exxon’s 22-Foot Rupture lllustrates Tremendous Operating Pressure of Oil Pipelines, INSIDE
CLIMATE NEws (April 12, 2013), https://insideclimatenews.org/news/12042013/exxons-22-foot-rupture-
illustrates-tremendous-operating-pressure-oil-pipelines/.
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difficult and expensive with only partial removal of the non-aqueous phase generally possible, such that
the LNAPL zone acts as a long-term (e.g., many decades) continuous source (Siegel, 2014; Zheng et al.,
2010; Sudicky and lliman, 2011). Remediation of soil (LNAPL) and dissolved-phase groundwater
contamination typically require some combination of techniques such as soil excavation (LNAPL);
trenches, drains, and extraction wells (groundwater); soil vapor extraction (vapor phase constituents in
the unsaturated zone); air sparging (LNAPL and dissolved-phase); enhance oil recovery (water, steam,

cosolvents, surfactants, etc.); bioremediation; and/or physical barriers (e.g., slurry walls and sheet piling).

The resulting dissolved-phase (groundwater) contaminant plume can be several miles in length because
one pound of crude oil can contaminate 25,000,000 gallons of groundwater at a concentration of 5 parts
per billion (5 micrograms per liter), which for example is the safe drinking-water standard for benzene, a
known human carcinogen in crude oil.

Figure 4
Groundwater and Soil Contamination Caused by a Crude-Oil Pipeline Leak
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Crude-Oil Toxicity
Crude oil contains numerous chemicals that are known (e.g., benzene, a component of gasoline) or
suspected human carcinogens, and many other constituents that are environmentally-hazardous

compounds.®

Table 1 summarizes the typical chemical composition of West Texas Intermediate crude oil, which is
currently understood to be the type of crude oil that will be transported in the Pipeline. In addition to
volatile organic compounds such as benzene, toluene, ethylbenzene, and xylenes (BTEX), the crude oil
contains a family of environmentally-hazardous contaminants called polycyclic aromatic hydrocarbons
(PAHSs).4

Seven PAH compounds have been classified as probable human carcinogens: benz(a)anthracene,
benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a)anthracene, and
indeno(1,2,3-cd) pyrene. Long-term occupational studies of workers exposed to mixtures of PAHs have
shown an increased risk of predominantly skin and lung, as well as bladder and gastrointestinal cancers
(Abdel-Shafy and Mansour, 2016). In laboratory studies, animals exposed to levels of some PAHs over

long periods have developed lung cancer from inhalation, stomach cancer from ingesting PAHSs in food,

3 The Toxicity of Oil: What's the Big Deal?, NOAA OFFICE OF RESPONSE AND RESTORATION (Aug. 27, 2012,
last updated Nov. 9, 2020, 9:24 PM), http://bit.ly/NOAA_Toxicity _of Oil.

4 NATIONAL RESEARCH COUNCIL (US) COMMITTEE ON PYRENE AND SELECTED ANALOGUES, PoLYCYCLIC
AROMATIC HYDROCARBONS: EVALUATION OF SOURCES AND EFFECTS, Polycyclic Aromatic Hydrocarbons from
Natural and Stationary Anthropogenic Sources and Their Atmospheric Concentrations (1983) (ebook),
https://www.nchi.nim.nih.gov/books/NBK217758/; Polycyclic Aromatic Hydrocarbons (PAHS), ILLINOIS
DEPARTMENT OF PuBLIC HEALTH, http://www.idph.state.il.us/cancer/publications_riskfacts.htm (follow
“Polycyclic Aromatic Hydrocarbons (PAHS)” hyperlink) (last visited Feb. 3, 2021); Abdulazeez T. Lawal,
Polycyclic aromatic hydrocarbons. A review (July 14, 2017), COGENT ENVIRONMENTAL SCIENCE,
https://doi.org/10.1080/23311843.2017.1339841.
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and skin cancer from skin contact (Abdel-Shafy and Mansour, 2016). PAHs can persist in the

environment for many years, in some cases continuing to harm organisms long after the oil first spills.

Groundwater Travel Time from Byhalia Oil Pipeline to Memphis-Sand Extraction Well

Attachment B provides the technical details for a technique to approximate the minimum travel time for
groundwater contaminated by a hypothetical Byhalia oil pipeline spill in the Shallow Aquifer to reach a
water supply well in the Memphis Sand aquifer (Figure 5). The total travel time, T, includes (i) horizontal
advection of dissolved petroleum constituents by groundwater in the Shallow aquifer from the oil pipeline
to a breach in the Upper Claiborne Confining Unit, UCCU (distance “S”) ; (ii) vertical migration from the
Shallow Aquifer into the Memphis Sand; and (iii) horizontal contaminant transport in the Memphis Sand

aquifer from the breach vicinity to a water supply well (distance “M”).

Table 1
Chemical Composition of West Texas Intermediate Crude Oil
(Wang et al., 2003)
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The distances of horizontal migration (S and M) are the measured distances along “groundwater
pathlines”, which are shown as blue lines with arrows in Figures 6 and 7 (arrows depict the local direction
of groundwater flow) for the Shallow and Memphis Sand aquifers, respectively. Groundwater pathlines
are the trajectories that small representative parcels of groundwater, and any dissolved constituents, will
follow based on the measured hydraulic-head contours (black contour lines in Figures 6 and 7), assuming
steady-state and isotropic (hydraulic conductivity does not depend on direction) conditions (Bear, 1979).
Under these conditions the pathlines intersect the hydraulic-head contours at 90-degree angles, which

forms the basis for drawing the pathlines using the measured head contours in Figures 6 and 7.



Figure 5
Schematic of Groundwater Travel from a Hypothetical Oil Pipeline Leak in the Shallow Aquifer
to a Water Supply Well in the Memphis Sand Aquifer
(adapted from Jazaei et al., 2018)
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As illustrated in Figure 6, shallow groundwater originating at numerous locations along the first 10-mile
section of the oil pipeline flows toward various known or suspected breaches in the UCCU, which provide
strong hydraulic connections with the underlying Memphis Sand aquifer. Some Shallow-Aquifer pathlines
also extend to the Mississippi River and Horn Lake. Moreover, the shallow groundwater travel distances
(S) from the Pipeline to these breaches are relatively small (<2 miles), or may be zero if the Pipeline
directly overlies a breach in the UCCU.

Figure 7 depicts pathlines in the Memphis Sand aquifer that originate beneath known or suspected UCCU
breaches which could be petroleum contaminant sources (i.e., are located downgradient from the
pipeline) based on the Shallow Aquifer pathlines (Figure 6). These Memphis Sand pathlines (Figure 7)
indicate that, for this hydraulic-head measurement date, petroleum-contaminated Memphis-Sand
groundwater beneath almost all of these breaches (Figure 6) would be captured by water supply wells
(e.g., Davis, Allen, and Mallory wellfields). Further, the travel distance (M) in the Memphis Sand would
range from very small (<1 mile near the Davis wellfield) to only about four miles (Allen and Mallory
wellfields). In addition, any petroleum release from the eastern end of the pipeline could directly
contaminate the Memphis Sand because the UCCU is absent in this area, with groundwater
contamination potentially reaching the Lichterman wellfield.
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Figure 6
Groundwater Pathlines in the Shallow Aquifer Originating Near Hypothetical Oil Pipeline Leaks
and Reaching Known or Suspected Breaches in the Upper Claiborne Confining Unit
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The results of the Attachment B groundwater travel-time calculations are summarized in the Figure 8
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nomograph, which can be used to estimate T = Ts + Tm as a function of groundwater travel distances (S
and M) in the Shallow and Memphis Sand aquifers. For example, as illustrated by the purple example in
Figure 8, for S=0.8 miles and M=0.3 miles, the estimated total travel time, T=8 years, which is expected to
be within the range of travel times for breaches located near the Davis wellfield (S<1-2 miles; M<1 mile).
Larger travel times (~15-60 years) would be expected for petroleum contaminants to reach the Allen
wellfield (M~4 miles; S< 1 mile).



Figure 7
Groundwater Pathlines in the Memphis Sand Aquifer
Originating from Breaches in the Upper Claiborne Confining Unit and
Ending in Water Supply Wells
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Alternatively, travel times for a particular wellfield could be studied by focusing on a specific range of S
and M values. For example, Figure 9 focuses on the Davis wellfield by using M=0-1 mile and S=0-2 miles
and indicates that Tpavis is estimated to vary from less than 2 years to as large as 10-20 years (also refer
to Davis extraction-well locations in Figure 2).
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Attachment A

Investigations of Groundwater Flow from the Shallow Aquifer
into the Memphis Sand Aquifer

The U.S. Geological Survey (USGS) has conducted multiple hydrologic investigations which evaluate the
potential for vertical groundwater flow and chemical transport between the Shallow Aquifer and the
Memphis Sand Aquifer (i.e., inter-aquifer exchange of groundwater) in the vicinity of the Allen plants
(USGS, 1986; USGS, 1990; USGS, 1992; USGS, 1995; USGS, 2016; USGS, 2018). [Note: Vertical
geologic cross-sections showing the alluvial and Memphis Sand aquifers, separated by a confining unit

(absent in some areas), are presented below].

The 1986 USGS investigation analyzed the following types of data in the Memphis area: geologic
information; groundwater-level data; carbon and hydrogen isotope concentration data; and groundwater
temperature data. One of the key findings of the 1986 USGS study was that the hydraulic head (i.e.,
groundwater “driving force”) in the uppermost water-table aquifers (including the Shallow Aquifer) is
greater than or equal to the hydraulic head in the Memphis Sand Aquifer in the Memphis urban area
(Figure 2). Specifically, the water-table aquifer hydraulic heads range from about 20 feet to 130 feet
greater than the heads in the Memphis Sand. Therefore, throughout this area the vertical hydraulic
gradient is downward toward the Memphis Sand, as is the associated vertical direction of groundwater
flow. The hydraulic-head differences are greater in areas where water-supply wells extract significant
amounts of groundwater from the Memphis Sand and generally smallest near the Mississippi River and
major streams, where the water-table elevation is lower. The USGS (1986) has also identified localized
reductions in hydraulic head in the upper alluvial aquifers due to Memphis-Sand groundwater extraction in
areas where breaches in the confining layer (separating the alluvial and Memphis Sand aquifers) have
been identified (further discussed below). Geothermal gradients computed from groundwater
temperature data confirm that vertical leakage occurs from the water-table aquifers through the Jackson-
upper Claiborne confining unit to the Memphis Sand. This groundwater leakage rate is greatest in areas
where the hydraulic head in the Memphis Sand is depressed due to groundwater extraction. The vertical

distribution of carbon-14 concentrations in groundwater generally confirm this vertical-leakage pattern.
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Figure 2
Hydraulic Head Differences beween the Water-Table Aquifers and the Memphis Sand
in the Memphis Urban Area, Fall 1984 (from USGS, 1986; locations of Memphis Light, Gas, and Water
well fields are shown as black-filled polygons)

The 1990 and 1995 USGS investigations identified “windows”, or discontinuities, in the upper Claiborne
confining unit separating the Shallow Aquifer and Memphis aquifers (Figure 3). One inferred window is
located beneath President’s Island one mile northeast of the Allen plants. A second window was
identified about three miles south of the Allen plants and west of the Davis Well Field, where downward
groundwater leakage from the Shallow Aquifer to the Memphis aquifer was documented (USGS, 1995;
Koban et al., 2011). As summarized in Appendix E of the Remedial Investigation report (Stantec, 2018a),
downward leakage from the shallow water-table aquifers into the Memphis Sand Aquifer has been

identified at several other
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Figure 3
Known or Suspected Windows in Upper Claiborne Confining Unit
(from Appendix E of RI Report)

locations in the Memphis area based on shallow-aquifer water-table lowering, water-quality changes in
the Memphis aquifer, and/or hydrologic tracer studies (USGS, 1986; USGS, 1992; Larsen et al., 2003;
Gentry et al., 2005; Gentry et al., 2006; Ivey et al., 2008; Larsen et al., 2013; Larsen et al., 2016).

In a recent large-scale groundwater modeling study Jazaei et al. (2018) determined that several other
additional potential breaches in the UCCU should be investigated (Figure 4).
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Figure 4
Five Zones ldentified by Groundwater Modeling where Further Field Investigations are Required
(from Jazaei et al., 2018)
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Attachment B
Details of the Groundwater Travel Time Calculation

Referring to Figure B-1,

S = horizontal distance along a groundwater pathline in the Shallow Aquifer from the Byhalia oil pipeline
to a downgradient (in the direction of groundwater flow) breach in the Upper Claiborne confining unit,
UCCU (feet); and

M = horizontal distance along a groundwater pathline in the Memphis Sand Aquifer from a breach in the
UCCU to a downgradient water supply well (feet).

Figure B-1
Groundwater Travel Times in the Shallow and Memphis Sand Aquifers
. Clean water
. Polluted water

# Contaminant

Oil Pipeline @

‘I.

e Water Supply

#

w_euj.

Note that the farthest extent of downgradient transport of contaminated groundwater is a combination of
advection (transport my mean flow) and longitudinal dispersion, which is due to the nonuniform nature of
the groundwater velocity due to aquifer heterogeneities (Figure B-2). Accordingly, from Bear (1979):

S = Sadvection + Sdi:spersion = uS + 2 (DL)S TS (1)

M=M +M =Uy + 2\(D)y Ty (2)

advection dispersion
where, u = Ki/ne is the mean horizontal groundwater pore velocity (ft/day); K is the mean horizontal
hydraulic conductivity of the aquifer; iis a representative horizontal hydraulic gradient (feet per foot); and
Ne is the effective porosity of the porous medium (dimensionless); T is the minimum groundwater travel
time (days), ignoring attenuation by sorption to the porous medium; and D. is the longitudinal dispersion
coefficient (feet?/day), which can be approximated as (ASTM, 1994):

DL=(0.1L) u

© 20



and L is the groundwater travel distance (S or M).

Figure B-2
Comparison of Contaminant Advection by Groundwater Flow Influenced
by Hydrodynamic Dispersion: (a) Homogeneous Porous Medium; (b) Fingering Caused by
Layered Beds and Lenses; (c) Spreading Caused by Irregular Lenses
[from Freeze and Cherry (1979)]
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Representative values for the above parameters are:

Shallow Aquifer:

K = 200-300 ft/day (Brahana and Broshears, 2001); 40-120 ft/day (Jazaei et al., 2018); 65 ft/day (USGS,
1986) -> use K = 150 ft/day

i ~0.003 (Davis Wellfield area; Fig. B-6); ~ 0.004 (downtown Memphis; Fig. B-6) -> use i = 0.0035
Assuming ne = 0.25 (Bear, 1979), us = 2 ft/day

Memphis Sand Aquifer:

K = 20-100 ft/day (Brahana and Broshears, 2001); 10-50 ft/day (Jazaei et al., 2018) -> use K = 100 ft/day
i ~0.0012 (Fig. B-7) ->use i =0.0012

Assuming ne = 0.25 (Bear, 1979), uw = 0.5 ft/day

Using the above parameter values, Equations (1) and (2) were solved for a range of S and M values by
developing a custom FORTRAN program that calls the ZBRENT root-finding subroutine by Press et al.
(1992) to compute a range of Ts and Twm values. These results were used to develop the travel-time

nomograph in Figure B-3, where T = Ts + Twm.



Figure B-3

Estimated Total Groundwater Travel Time
from Potential Byhalia Oil Pipeline Leak
to Water Supply Well in Memphis Sand Aquifer
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Note the estimate of total groundwater travel time, T, in Figure B-3 ignores the very short time period
(Tvertica) required for vertical flow from the Shallow Aquifer through a breach in the UCCU and into the
Memphis Sand Aquifer, which can be estimated as:

Tvertical ~ Lv / Uy
where, Ly ~ 50 feet (Figure B-4); uy = Ky iv / ne is the vertical groundwater velocity through the breach;
and iv = dHv/ Lv. Assuming Ly ~ 50 feet (Figure B-4), dHv ~ 50 feet (Figure B-5), and Ky ~ 33 feet/day (3x
smaller than the horizontal K; Weeks, 1969), then uy ~ 120 feet/day. Thus, it is estimated to require less
than one day for groundwater to travel through a breach in the UCCU, which is negligible compared to T
=Ts+ Twm.
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Figure B-4
Representative Geologic Cross-Section Showing
the Shallow Aquifer, the UCCU, and the Memphis Sand Aquifer
(from Stantec, 2019)
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Figure B-5
Hydraulic Head Differences between the Shallow and Memphis Sand Aquifers
in the Memphis Urban Area, Fall 1984
(from USGS, 1986)
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Figure B-6
Measured Hydraulic Head Distribution (feet) in Shallow Aquifer
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Figure B-7
Measured Hydraulic Head Distribution (feet) in Memphis Sand Aquifer
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